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Abstract

Segmentation of medical images using multiple atlases has recently gained immense attention due to their augmented robustness
against variabilities across different subjects. These atlas-based methods typically comprise of three steps: atlas selection, image
registration, and finally label fusion. Image registration is one of the core steps in this process, accuracy of which directly affects
the final labeling performance. However, due to inter-subject anatomical variations, registration errors are inevitable. The aim of
this paper is to develop a deep learning-based confidence estimation method to alleviate the potential effects of registration errors.
We first propose a fully convolutional network (FCN) with residual connections to learn the relationship between the image patch
pair (i.e., patches from the target subject and the atlas) and the related label confidence patch. With the obtained label confidence
patch, we can identify the potential errors in the warped atlas labels and correct them. Then, we use two label fusion methods to
fuse the corrected atlas labels. The proposed methods are validated on a publicly available dataset for hippocampus segmentation.

Experimental results demonstrate that our proposed methods outperform the state-of-the-art segmentation methods.

Keywords Multi-atlas image segmentation - Label fusion - Fully convolutional network - Deep learning

Introduction

Recently, multi-atlas image segmentation (MAIS) methods
have become increasingly the most reliable methods for
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medical image segmentation (Iglesias and Sabuncu 2015).
MALIS exploits several labeled atlases to segment a target im-
age; each atlas consists of an image and its corresponding
label map, which is usually obtained by manual segmentation.
These algorithms often comprise three steps: atlas selection,
image registration, and label fusion. Specifically, the first step
is to select most relevant atlases (based on similarity indices).
Then, the selected atlases are registered to the target image
(i.e., the image to be segmented), and the corresponding atlas
labels are warped to the target image space with the obtained
registration deformation fields. Finally, the warped atlas labels
are fused to obtain the final segmentation (referred to as label
fusion). In this process, accurate registrations between atlas
images and the target image is crucial. However, image regis-
tration is an ill-posed problem given the large inter-subject
anatomical variances (Haber and Modersitzki 2004). Atlas
images cannot be perfectly matched to the target image, and
thus registration errors are inevitable (Doshi et al. 2016). The
majority of research works on MAIS utilize existing registra-
tion tools but focus more on the atlas selection and label fusion
steps to counter the registration errors (Doshi et al. 2016;
Aljabar et al. 2009; Artaechevarria et al. 2009; Asman and
Landman 2013; Benkarim et al. 2017; Zhu et al. 2017; Hao
etal. 2014).
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The existing atlas selection (Aljabar et al. 2009; Hao et al.
2014; Rohlfing et al. 2004; Cao et al. 2011; Duc et al. 2012;
Langerak et al. 2013; L&tjonen et al. 2010; Sanroma et al.
2014; Zaffino et al. 2018) and label fusion (Artaechevarria
et al. 2009; Asman and Landman 2013; Hao et al. 2014;
Rohlfing et al. 2004; Heckemann et al. 2006; Coupé et al.
2011; Rousseau et al. 2011; Liao et al. 2012; Wang et al.
2013; Wang et al. 2011; Bai et al. 2015; Zhu et al. 2015;
Warfield et al. 2004; Bai et al. 2013; Jorge Cardoso et al.
2013; Sabuncu et al. 2010; Liao et al. 2013; Haom et al.
2012; Asman and Landman 2012; Commowick et al. 2012;
Asman and Landman 2014) methods have shown their effec-
tiveness in alleviating registration errors in the MAIS
methods; however, the most natural way to address the prob-
lem is to find the potential errors in the warped atlas labels and
then correct them before performing label fusion. In this pa-
per, we propose a deep learning-based confidence estimation
method for detecting the potential errors in the warped atlas
labels. Those detected labels in the warped atlas are then
corrected, and two label fusion schemes are used to fuse the
corrected labels to obtain the final segmentation. Figure 1
shows the general framework of the proposed method. We
validate the proposed methods for hippocampus segmentation
using a publicly available dataset (Boccardi et al. 2015). The
proposed methods are compared with several state-of-the-art
segmentation methods, including majority voting (MV)
(Rohlfing et al. 2004; Heckemann et al. 2006), joint label
fusion (JLF) (Wang et al. 2013), and a deep learning segmen-
tation method with 3D deeply supervised network (DSN)
(Dou et al. 2017). The obtained results show that the proposed
methods outperform the state-of-the-art methods in terms of
several segmentation evaluation metrics.

The main contributions of this work can be summarized as
follows: 1) We propose a novel multi-atlas image segmenta-
tion framework by estimating the confidence of each warped
atlas label, used to identify and correct all warped atlas labels;
2) Instead of using local supervised learning models, we pro-
pose a deep learning based global model to learn the

relationship between the image patch pairs (the target image
patch and the atlas image patch) and the confidence of each
warped label in the atlas patch; 3) The proposed method can
combine the advantages of multi-atlas segmentation method
and deep learning based segmentation methods to improve the
segmentation accuracy and robustness.

Background and Related Work

The atlas selection step selects a subset of atlases that are most
similar to the target image based on certain image similarity
criteria, such as normalized mutual information (Aljabar et al.
2009; Hao et al. 2014; Rohlfing et al. 2004), distance in lower
dimensional manifold space (Cao et al. 2011; Duc et al. 2012),
and registration performance (Langerak et al. 2013). Since
dissimilar atlases may produce more severe registration errors
when registered to the target image, removing them can intu-
itively improve MAIS performance. However, a main issue is
that image similarity metrics cannot always guarantee the op-
timal selection of atlases (Lotjonen et al. 2010; Sanroma et al.
2014) due to various inter-subject variability. To make the
methods agnostic to similarity measures and their induced
bias, learning based methods (such as support vector
machine-based atlas ranking (Sanroma et al. 2014)) has been
used for atlas selection. In a recent paper (Zaffino et al. 2018),
Zaffino et al. argued that one should prefer the best atlas group
over the group of best atlases, and subsequently proposed an
atlas group selection algorithm based on convolutional neural
networks.

In the label fusion step, the warped atlases are combined to
obtain the final segmentation (Iglesias and Sabuncu 2015).
The existing label fusion methods can be mainly categorized
into three different categories: voting methods (Artaechevarria
et al. 2009; Rohlfing et al. 2004; Heckemann et al. 2006;
Coupé et al. 2011; Rousseau et al. 2011; Liao et al. 2012;
Wang et al. 2013), learning-based methods (Hao et al. 2014;
Wang et al. 2011; Bai et al. 2015; Zhu et al. 2015), and
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Fig. 1 The general framework of the proposed method. In the figure, L i is the i-th atlas label map, J i is the deformation field obtained by registering

the i-th atlas image to the target image
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probabilistic methods (Asman and Landman 2013; Warfield
et al. 2004; Bai et al. 2013; Jorge Cardoso et al. 2013).
Majority voting is the simplest voting method, which assigns
the same weighting coefficient to each atlas (Rohlfing et al.
2004; Heckemann et al. 2006). The voting label fusion
methods use a weighted combination of atlas labels to obtain
the target image segmentation. Different combination strate-
gies have been investigated, including global weighted voting
(Sabuncu et al. 2010) and local weighted voting
(Artaechevarria et al. 2009). It is shown that local weighed
voting scheme outperforms global weighted voting when
segmenting high-contrast structures, but global methods are
less sensitive to noise when segmenting low-contrast struc-
tures (Artaechevarria et al. 2009). To further relieve the regis-
tration errors, non-local weighted voting methods have been
proposed in the literature, which select training samples in a
searching neighborhood from each atlas for voting (Coupé
et al. 2011; Rousseau et al. 2011). Sparse representation and
joint label fusion methods have been also widely investigated
for improving the weighted voting label fusion results (Wang
etal. 2013; Liao et al. 2013). In the learning-based methods, a
local regression or classification model is built to model the
relationship between the image appearances and the corre-
sponding labels using the samples obtained from the neigh-
boring region of each atlas (Wang et al. 2011; Haom et al.
2012). To obtain better segmentation results, augmented fea-
tures are usually used in these methods. For example, the first-
and second-order gradient filters, Sobel and Laplacian opera-
tors are used in (Hao et al. 2014), while image gradients,
context features and image intensities are used in (Bai et al.
2015). As an example for probabilistic methods, Bayesian
approaches were used for label fusion (Warfield et al. 2004).
In (Warfield et al. 2004), the STAPLE algorithm was intro-
duced to iteratively estimate the target segmentation and the
performance of each atlas. Several methods have been pro-
posed to improve the STAPLE method, including the local
STAPLE by estimating the reference segmentation with spa-
tially varying performance parameters (Asman and Landman
2012; Commowick et al. 2012), non-local STAPLE by
reformulating the STAPLE framework from a non-local mean
perspective (Asman and Landman 2013), and hierarchical
STAPLE using hierarchical models of rater performance
(Asman and Landman 2014).

The multi-atlas image segmentation method (MAIS)

(Iglesias and Sabuncu 2015) utilizes N selected atlases Zi =
(7,~, Z,) ,i=1,2,...,N to segment a target image /. For the i-

th atlas A;, let 7, be its atlas image and L; the corresponding
label map. In MAIS, each atlas image is first registered to the
target image and its corresponding label map is then propa-
gated to the target image space, resulting N warped atlases,
ie, A=, L), Vi=1,2,...,N. Then, the label of each voxel

in the target image is inferred from the warped atlases. This
procedure is referred to as label fusion.

One of the most widely used label fusion methods is the
weighted voting scheme, in which the label of the target voxel
x is computed by a weighted combination of the correspond-
ing warped atlas labels (Artacchevarria et al. 2009),

L(x) = argmax 3. wi(x) (Li(x) == ). 1)

1=l
where wi(x) is the weight of the i-th atlas voxel x reflecting the
confidence for the i-th atlas image. The simplest way to set
these weights in (1) is to use constant weights for all atlases,
leading to the majority voting label fusion method (Rohlfing
et al. 2004; Heckemann et al. 2006). However, the proper
estimation of weights wi(x) Vi=1, 2, ..., N improves the over-
all segmentation performance. Global weighted voting
methods (e.g., (Sabuncu et al. 2010; Artaechevarria et al.
2008)) estimate a global weight w; for each atlas, irrespective
of the voxel location. But given the fact that the registration
error may be distributed differently at different locations in
each atlas, estimating local weight w,(x) for each atlas at each
voxel location may be more feasible. The weight is usually
estimated according to the local appearance and similarity be-
tween the target image and each atlas, measured by a similarity
function such as Gaussian function (Sabuncu et al. 2010),

2

wix) = e Hm@xﬁ)\b’
where p/x) and p(x) are the same size vectorized patches cen-
tered at x on the target and the i-th atlas image, respectively;
and o, is a tuning hyperparameter.

To further alleviate possible registration errors, non-local
weighted voting (NLW) methods were proposed (Coupé et al.
2011; Rousseau et al. 2011), in which the label of the target
voxel can be computed by

L(x) :argllnaxé % () (L) == 1), 2)

where (2, is a search region centered at voxel x, and wy(x, y) is
the weight reflecting the confidence that the voxel y of the i-th
atlas has the same segmentation label as the target voxel x. The
weight w;(x, y) in (2) is estimated by the local appearance
similarity between patches of the target voxel x and the voxel
y in the i-th atlas image, according to the Gaussian similarity
function (Coupé et al. 2011; Rousseau et al. 2011),

~llee @it I3
Wi (x7y) =e o

In other works, based on these NLW label fusion methods,
Wang et al. (Wang et al. 2013) proposed a joint probability
model for estimating the confidence weights, Liao et al. (Liao
et al. 2013) proposed a sparse representation method for
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estimating the confidence weights and Zhu et al. (Zhu et al.
2017) proposed a local supervised metric learning method for
estimating the confidence weights, which were then used to
compute the target label through weighted voting.

Recently, with the surge of deep learning methods, such
technologies have also been applied to the tasks of multi-
atlas label fusion (Yang et al. 2017; Fang et al. 2017), with
the advantage of being independent from manual feature ex-
traction schemes. Specifically, in (Yang et al. 2017), the au-
thors formulated multi-atlas segmentation in a deep learning
framework, by integrating the feature extraction and the non-
local patch-based label fusion in a single deep network archi-
tecture. Fang et al. (Fang et al. 2017) introduced a multi-atlas
guided FCN by incorporating atlas information within the net-
work learning. Different from these methods, we utilize a deep
learning approach to estimate the confidence, which plays a
key role in the weighted label fusion methods. With the esti-
mated confidence, the warped atlas labels can be corrected, and
then the target label is computed by two label fusion schemes.

Methods

Our proposed deep learning method for multi-atlas label fu-
sion is comprised of a novel fully convolutional network
(FCN) to model the relationship between the image patch pair
and the label confidence. After learning the confidence, sim-
ilar to the previous works, two label fusion schemes including
majority voting (MV) and joint label fusion (JLF) are used to
fuse the corrected warped atlas labels. Therefore, we refer to
our methods as FCN-MV and FCN-JLF throughout the paper.

FCN Based Confidence Estimation

Given an image patch p; in the target image and the corre-
sponding image patch p, in a warped atlas image, we learn a
function f{p,, p,) to model the relationship between the image

patch pair (p,, p,,) and the label confidence C (Fig. 2 illustrates
this process),

C= f(pt’pu)v

where C is a patch with the same size as p, and p,,, indicating
whether p; and p,, have the same segmentation label,

oo = (s Y1180

where /(x) is the label of the target image voxel p,(x), and
l,(x) is the label of the warped atlas image voxel p,(x);
hence C can serve as the confidence map. Here, we pro-
pose a fully convolutional network (FCN) (Long et al.
2015; Ronneberger et al. 2015) to predict the confidence
estimation function f(p;, p,) (Milletari et al. 2016; Yu et al.
2017), but unlike regular FCNs, we propose one with re-
sidual connections, which has been demonstrated to be
effective for promoting information propagation and accel-
erating the convergence (He et al. 2016a). We incorporate
an architecture similar to U-Net (Ronneberger et al. 2015)
and hence we refer to our proposed FCN architecture as
ResUNet.

Figure 3 shows the structure of ResUNet, which consists
of a down-sampling path and an up-sampling path. The
down-sampling path contains one 3 x 3 x 3 convolution
layer, two 2 x 2 x 2 max-pooling operations with stride 2,
and three residual blocks. Correspondingly, the up-
sampling path contains three residual blocks, two 4 x 4 x
4 deconvolution layers with stride 2, and one 1 x 1 x 1
convolution layer. Each 3 X 3 X 3 convolution is followed
by a batch normalization and a rectified linear unit (ReLU).
To retain the spatial and localization details in the up-
sampling pathway, padded convolution layers are used in
our network, in which feature maps in the down-sampling
path are connected to the corresponding features in the up-
sampling path through element-wise summation. These
long-skip connections can provide detailed image

Fig. 2 The illustration of FCN
based confidence learning
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information to the up-sampling path that is otherwise lost
during the successive down-sampling process. The number
of possible outputs £, in the last 1 x 1 X 1 convolution layer
define the number of classes, which is set to 2 in our ap-
plication (i.e., we have two classes, with ‘0’ representing
different labels and ‘1’ representing the same labels).

The residual block consists of two 3 x 3 x 3 convolu-
tions, each followed by a batch normalization layer and a
ReLU. In the residual block, residual connections are used
to connect the input features to the output feature maps of
last convolution with an element-wise summation opera-
tion. Formally, the residual block can be expressed as (He
et al. 2016b),

n= (&) +¢,

where £ denotes the input feature maps, 7 denotes the
output feature maps, and () is the residual function
which consists of two 3 X 3 x 3 convolutions, each follow-
ed by a batch normalization layer and a ReLU in our
network. As studied previously, the residual connections
alleviate the problem of gradient vanishing, promote in-
formation propagation, and accelerate the convergence
(He et al. 2016a).

To train the model, a softmax loss is used (Gu et al. 2017):

H{C(x) = jHog o———,

1 e%ii
LSaﬁmax = o
—0 Zh:oe h.i

IE

I

J

where z; ; represents the j-th output of the last network layer
for the i-th voxel, C(x;) € {0, 1} represents the ground-truth
confidence at the location of voxel x;, and m is the number
of voxels in the input patch.

Label Fusion with FCN-Based Confidence Estimation

For labeling the target patch p,, the corresponding atlas image
patch p; and atlas label patch /; are extracted from the i-th
warped atlas, i=1, 2, ..., N. With the trained confidence esti-
mation model, we compute the confidence C;=f(p,, p;) for
each patch pair (p, p;), i=1, 2, ..., N. Then, we correct label
values in each label patch /; according to the obtained confi-
dence C;. For the case of binary segmentation (as in our ap-
plication), we have only two segmentation labels denoted by

{0,1}. The corrected label patch 1 is, therefore, computed by
roy S lix), i Gix) =1,
M”{kmm

if Cix) = 0.

After label correction, we use two label fusion methods to
compute the label values of the target patch, including major-
ity voting (Rohlfing et al. 2004; Heckemann et al. 2006) and
joint label fusion (Wang et al. 2013).

With the majority voting label fusion, the target label patch
[, is determined by

N

I;(x) = argmax Y. (IA,(x) == l), 1e{0,1}.

1=l

With the joint label fusion, the target label patch /; can be
computed by

N A
1) = argmax 3w (60) (I(6) == 1) (0,1},
where &(x) is the local search correspondence map between the
ith atlas and the target image, and w{&(x)) is the weight for the ith
atlas. We denote W, = [w1 (&, (x)); w2(&(x)); .. wy (Ey (x))]
. Then, W, is determined by

t
argmin WX(MX +al)W,,

—
W

N
st T wi(g0) =1,

where ¢ stands for transpose, / is an identity matrix, « is a
parameter (aw=0.1), and M, is a pairwise dependency matrix
(Wang et al. 2013).

As we use a patch-wise label fusion, for each target voxel
patch, a different label is computed, instead of only taking the
center voxel as the representative. The majority voting strate-
gy can hence be used to determine the labels of the overlap-
ping voxels of neighboring patches.

Evaluation Metrics

The image segmentation results are comprehensively evaluat-
ed based on nine different segmentation evaluation measures,
including Dice coefficient, Jaccard index, Precision, Recall,
Mean distance (MD), Hausdorff distance (HD), Hausdorff 95
distance (HD95), Average Symmetric Surface Distance
(ASSD), and Root Mean Square Distance (RMSD) (Jafari-
Khouzani et al. 2011). The first four metrics are used to mea-
sure the relative volumetric overlap between the automated
segmentation and the ground-truth segmentation, and the last
five metrics were used to measure the agreement between
segmentation boundaries. By denoting A as the manual seg-
mentation, B as the automated segmentation, and V(X) as the
volume of segmentation X, these nine evaluation measures
can be defined as:

L V(ANB) _ V(ANB) .. V(ANB)
Dice = 2—V(A) TV (B) ,Jaccard = —V(AUB) , Precision = —V(B) ,
V(ANB
Recall = w , MD = mean,css (mi”f opd (e, f ))»
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HD = max(H(A,B),H(B,A)), where H(A,B)
= MaXecon (minfeagd(e,f)),

HD95:similar to HD,except that 5% data points with the larg-
est distance are removed before calculation,

ASSD = (meaneeos (min reopd (e, f)) + mean,eap (minsezad(e, f))) /2,

\/ DA+ D3

RMSD =
card{0A} + card{oB}’

where D = Y o0 (minsespd(e, f)),

where OA is the boundary voxels of A, d(-, ) is the Euclidian
distance of two points, and card{} is the cardinality of a set.

Experiments and Results
Data and Preprocessing

The proposed method is validated for hippocampus segmen-
tation using a subset of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu/), containing 100 T1 MR images (29 normal
controls, 34 subjects with mild cognitive impairment, and 37
subjects with Alzheimer’s disease). The ADNI was launched
in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For detailed information, see www.adni-info.org. The

@ Springer

ADNI MRI scans were acquired using a sagittal 3D MP-
RAGE T1-w sequence (TR =2400 ms, minimum full TE,
TI=1000 ms, FOV =240 mm, voxel size of 1.25 x 1.25 x 1.
2mm?) (Jack et al. 2008). Ground-truth hippocampus labels of
the image data were provided in a preliminary release part by
the EADC-ADNI (European Alzheimer’s Disease
Consortium and Alzheimer’s Disease Neuroimaging
Initiative) harmonized segmentation protocol (www.
hippocampal-protocol.net) (Boccardi et al. 2015). All MR im-
ages were aligned along the line passing through the anterior
and posterior commissures of the brain (AC-PC line), and
their bias fields were corrected. Then, all images were spatial-
ly normalized to the MNI152 template with the voxel size of
1x1x1 mm?, using affine transformation (Boccardi et al.
2015).

In our experiments, we randomly select 40 subjects as
atlases. For the remaining 60 subjects, a two-fold cross-vali-
dation strategy is used to evaluate the segmentation perfor-
mance. Specifically, we randomly divide the 60 subjects into
two partitions (i.e., folds), each containing 30 subjects. For
each fold, one partition is used for training the confidence
estimation model using our proposed ResUNet, and the other
for testing the model performance. During training, 3 of 30
subjects were randomly selected for validation.

To reduce the computational cost, we run the algorithm on
the cropped hippocampus box, identified by a simple prepro-
cessing step. Since all the images were linearly aligned to the
MNI152 template, we scan all training atlases to find the min-
imum and maximum positions of the left and right hippocam-
pi along the axial, coronal, and sagittal directions, and then
enlarge the obtained box by 7 voxels in each direction to form
the cropping boxes for the left and right hippocampi, respec-
tively, thus they are big enough to cover the hippocampi of
unseen testing subjects. All images are then cropped using
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Table 1  Dice values (mean+std) of hippocampus segmentation results

using FCN-MV with different patch sizes (7, X r,, X 7,,)

r,=4 7,=8 7, =12 7,=16

Left  0.880+0.023 0.883+0.022 0.883+0.021 0.880+0.023
Right 0.886+0.023 0.888+0.021 0.886+0.022 0.881+0.025

these identified boxes, and the cropped images are normalized
to have similar intensity levels by using a histogram matching
method. A nonlinear, cross-correlation-driven image registra-
tion algorithm (Avants et al. 2008) is used to register the
cropped atlas images to each cropped target image.

Experiment and Parameter Setting

To further reduce the computational cost, we use the majority
voting label fusion method in (Heckemann et al. 2006) to
obtain an initial segmentation of the target image. We, then,
apply the proposed method only to the voxels without 100%
votes for either the hippocampus or the background in the
majority voting method. We randomly extract image patch
pairs from each training image and its warped atlas images
centered at the locations where 100% votes were not achieved
in the majority-voting based initial segmentation. The patch
size is empirically selected from 4 x4 x4, 8 x 8 x §, 12 x
12x12 and 16 x 16 x 16. Table 1 shows the segmentation
results obtained by FCN-MV with different patch sizes. It
can be observed that the results obtained by FCN-MV with
the patch size 8 x 8 x 8 are slightly better than those with other

3 patch sizes. Thus, we set the patch size to 8 x 8 X 8 in the
proposed methods, FCN-MV and FCN-JLF.

Our network is trained on a NVIDIA Titan Xp with 12 GB
memory, and implemented using Caffe (Jia et al. 2014). The
Adam optimizer is used for training with a batch size of 20.
The learning rate is initially set to 0.0001 and then decreased
by a factor of y=0.1 every 10,000 iterations. The weight
decay and momentum are set to 0.0005 and 0.9, respectively.
The network is trained for maximum 60,000 iterations. Note
that we separately construct the training set and then train
separate ResUNet models for the left and right hippocampi,
respectively.

Comparison with Existing Methods

We compare our proposed methods, FCN-MV and FCN-JLF,
with two widely-used label fusion methods, MV (Rohlfing
et al. 2004; Heckemann et al. 2006) and JLF (Wang et al.
2013), and also with a deep learning segmentation method
with 3D deeply supervised network (DSN) (Dou et al.
2017). The two label fusion methods are running the same
settings as our proposed methods (i.e., the same set of 40
atlases, same non-linear registration, and same patch-wise la-
bel fusion fashion). Atlas selection is conducted based on
normalized mutual information (NMI) for selecting the top
20 most similar atlases from the atlas set (Zhu et al. 2017,
Hao et al. 2014). The optimal hyperparameters of JLF were
r,=1and 8= 1, which are selected from {1, 2,3} and {0.5, 1,
1.5, 2}, using a grid-search strategy based on the atlas dataset
with 40 leave-one-out cross-validation experiments.

Table 2 Nine index values (meanstd) of hippocampus segmentation results using different methods

MV JLF DSN FCN-MV FCN-JLF
Dice 0.856+0.031%+ 0.880 + 0.024%+ 0.869 +0.022%+ 0.883+0.022 0.884 +0.020
(L/R) 0.860 +0.033%* 0.884 +0.023%« 0.871 +£0.024%* 0.888 £0.021% 0.891+0.019
Jaccard 0.750 +0.047%+ 0.786 +£0.037%* 0.769 +0.035% 0.792 £0.034 0.793 £0.032
(L/R) 0.755 +0.048™* 0.794 +0.036™* 0.772 +£0.036™* 0.800 +0.033* 0.803 +0.030
Precision 0.861 +0.048" 0.879+£0.032% 0.866 +0.033% 0.896 +0.029 0.879+£0.029%
(L/R) 0.864 +0.052%+ 0.882 +0.036"* 0.870 +0.034%+ 0.902 +£0.033 0.889+0.0.031%
Recall 0.854 +0.049%+ 0.882+0.036" 0.874+0.032% 0.872 £0.033* 0.890 +0.030
(L/R) 0.859 + 0.044™+ 0.889 +0.029% 0.873 £0.034* 0.876 +0.028% 0.894 £ 0.027
HD 3.157+0.853% 3.076 £0.784*% 7.324+10.672%* 2.843 £0.770 2.951+0.827
(L/R) 3.255+0.894% 3.227+1.100 5.250+8.067 3.013+0.878 3.057+0.993
HD95 1.345 +0.478% 1.093 £0.352 1.934 +4.532% 1.054+0.271 1.028 +0.167
(L/R) 1.332+£0.441%« 1.101+£0.237 1.322 +£0.294%« 1.099 +0.244 1.070 +0.196
MD 0.284 +0.054™* 0.252 +0.048™* 0.317 £0.296"* 0.218 +0.032 0.238 +0.033%
(L/R) 0.278 +0.063%* 0.237+0.051% 0.258 +0.058% 0.205+0.044 0.221+£0.043"*
ASSD 0.334+0.077" 0.265+0.052% 0.353 +£0.145™ 0.255+0.042 0.252 +0.035
(L/R) 0.328 £0.071%* 0.260 = 0.043%* 0.322 +0.049%* 0.249 +0.036* 0.242 +£0.034
RMSD 0.632 +0.123%* 0.551 +0.090™* 0.874 +0.910™* 0.533+0.073 0.527 £0.058
(L/R) 0.628 +£0.110™"* 0.550+0.074% 0.679 +0.293%* 0.534 £0.067* 0.523+0.063

“# indicates FCN-MYV achieves significant improvement over the corresponding method and “*’ indicates FCN-JLF achieves significant improvement
over the corresponding method in the Wilcoxon signed rank tests with p value <0.05. Best results in each row are typeset in bold typeface
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Fig. 4 Box plots of the segmentation results based on nine evaluation measures. In each box, the central mark is the median, and edges are the 25th and
75th percentiles, respectively

For DSN, we select 40 subjects (i.e., the subjects used as by the FCN based confidence estimation, which potentially
atlases in the proposed methods) as training set and other =~ compensates for the registration error. FCN-JLF can further
60 subjects as testing set. During training, 4 subjects were  improve the Dice scores by 0.1% and 0.3% for the left and
randomly selected for validation. As the restriction of GPU  right hippocampus segmentation results, compared with FCN-
memory, we use image patches as input for the network, = MV. This improvement is achieved by using the more ad-
instead of using the whole images. The patch size is set to  vanced label fusion method, JLF, for fusing the corrected label
16 x 16 x 16, optimally selected from 8 x 8 x 8, 16 x 16 x maps. It can also be observed that JLF improves MV by 2.4%
16, 24 x 24 x 24. We separately construct the training set  both for the left and right hippocampi, while FCN-JLF only
and then train separate DSN models for the left and right  improves FCN-MV 0.1% and 0.3% for the left and right hip-

hippocampi, respectively. pocampi. This demonstrates that our proposed FCN based
Table 2 lists the nine index values of segmentation results ~ label correction method can effectively correct registration
using different segmentation methods. It shows that our pro-  errors. With label correction, even the simplest majority vot-

posed methods, FCN-MV and FCN-JLF, obtain the best re-  ing label fusion can achieve better segmentation results than
sults. Compared with the MV method, FCN-MV improves the the state-of-the-art JLF method. Our proposed methods also
Dice scores by 2.7% and 2.8% for the left and right hippo-  obtain better segmentation results than the deep learning seg-
campus segmentation results. This improvement is achieved =~ mentation method (DSN).
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Target Image Manual Segmentation

Target
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Atlas Image

Warped
Atlas 1

Warped
Atlas 2

Warped
Atlas 3

Target Image

FCN-MYV Segmentation

dE

Confidence Map Corrected Label

Fig. 5 Examples of confidence maps and corrected (warped) atlas label maps

Figure 4 shows the box plots of the segmentation results
based on the nine evaluation measures. It is obvious that our
proposed methods perform consistently better than other
methods. For the HD measure, several severe outliers can be
observed in the segmentation results obtained by DSN. For
the HD95 measure, one can see in the figure that the boxes
turn to lines for both left and right hippocampus segmentation
results obtained by our proposed methods. This means that the
HD95 values at the 25th and 75th percentiles reach the same
value, indicating that our proposed method is very robust. The
similar results are obtained by JLF method.

Figure 5 shows examples of confidence maps and corrected
(warped) atlas label maps. In the confidence maps, dark
voxels denote the confidence values of 0, which means that
registration errors may happen at these voxels. The corrected
atlas label maps are obtained by changing the label values at
the voxels with the confidence values being 0. We can see that
the corrected (warped) atlas label maps are more similar to the
target label, compared to the original warped atlas labels.
Meanwhile, we can also find some artifacts in the second
corrected atlas label, which makes the label unsmooth.
Interestingly, most of these artifacts can be perfectly

Ground truth

FCN-MV FCN-JLF

Fig. 6 Sagittal view (top row) and 3D rendermg (bottom row) of left hlppocampus segmentations for a randomly selected subject (red: ground-truth;
green: automated segmentations; blue: overlap between ground-truth and automated segmentations)
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Fig. 7 Tllustration of the dilated dense network structure. The number of kernels is denoted in each convolution operation rectangle

eliminated by label fusion, resulting smooth segmentation,
which can be observed in the FCN-MV segmentation from
the figure. Figure 6 shows sagittal view and 3D rendering of
left hippocampus segmentations for a randomly selected sub-
ject. We can observe that our proposed methods produce the
most accurate segmentation results.

Discussion

Multi-atlas image segmentation (MAIS) has recently gained
lots of attention for medical image segmentation (Iglesias and
Sabuncu 2015), in which a set of atlases are first selected and
then registered to the target image. Next, the corresponding
atlas labels are warped to the target image space and further
combined to obtain the segmentation (i.e., the label fusion
step). This step is very important in the MAIS method, as it
deals with registration errors that may reduce accuracy and
introduce unnecessary smoothness in the segmentation re-
sults. One of the most popular label fusion methods is the local
weighted voting method. The pre-defined similarity functions
are often directly used for estimating the confidence in the
local weighted voting method, such as Gaussian function
(Sabuncu et al. 2010) and inverse function (Artacchevarria
et al. 2009).

The drawback of using a pre-defined similarity function to
estimate the confidence of each atlas is sub-optimality of the
obtained confidence, as two similar (in ferms of appearance)
patches may belong to different tissue classes (Bai etal. 2015).
To overcome this drawback, similar to those local supervised
models for learning the confidence of two patches with the
same class label (Benkarim et al. 2017; Zhu et al. 2017), we
have developed a deep learning based method by using a fully
convolutional network (FCN) to robustly estimate the confi-
dence values. Unlike previous supervised methods (e.g.,
(Benkarim et al. 2017; Zhu et al. 2017)) that require separate
training for each voxel, which is computationally too com-
plex, our method trains a single model for all voxel locations.
With the estimated confidence, even a simple majority voting
method can obtain superior segmentation results, compared to
all other widely-used state-of-the-art methods.

According to (Zhu et al. 2017), patch-wise label fusion
strategies often obtain more accurate segmentation results
compared to the voxel-wise label fusion methods. Thus, we
implemented our proposed method as a patch-wise label fu-
sion strategy by estimating the confidence map of the whole
image patch, instead of only estimating confidence for the
center voxel. This was implemented using a new architecture
of fully convolutional networks (Long et al. 2015).
Specifically, we used the residual U-Net as the base architec-
ture (Milletari et al. 2016; Chen et al. 2018). U-Net consists of

Table 3 Nine index values (mean

+std) of hippocampus FCN-MV DDN-MV

segmentation results using

different methods Dice (L/R) 0.883 +0.022 / 0.888 £ 0.021 0.884+0.022 / 0.889 +0.021
Jaccard (L/R) 0.792 +£0.034 / 0.800 £ 0.033 0.792 +0.034 / 0.800 £ 0.032
Precision (L/R) 0.896 +0.029 / 0.902 +0.033 0.897£0.029 / 0.901 +0.031
Recall (L/R) 0.872+0.033 / 0.876 £ 0.028 0.872+0.034 / 0.878 £0.028
HD (L/R) 2.843+0.770 / 3.013+£0.878 2.836+0.719/3.013+£0.904
HD95 (L/R) 1.054+0.271/1.099+0.244 1.064+0.295/1.097+0.217
MD (L/R) 0.218+0.032 /0.205+0.044 0.216+0.032 / 0.206 £ 0.042
ASSD (L/R) 0.255+0.042 /0.249+0.036 0.254+£0.044 / 0.249+0.037
RMSD (L/R) 0.533+0.073 /0.534+0.067 0.533+0.076 / 0.532+0.067
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a down-sampling path and an up-sampling path. The down-
sampling path alternates with convolution layers and pooling
layers to enlarge the receptive field. The up-sampling path
alternates with convolution layers and deconvolution layers
to recover the image resolution. The feature maps in the
down-sampling path are concatenated to the corresponding
feature maps in the up-sampling path with long-skip connec-
tions, aggregating multi-scale features for dense prediction.
We also used residual connections to group every two convo-
lution layers, which can promote the information flow and
accelerate the convergence (He et al. 2016b).

Besides the U-Net structures, dilated convolution networks
can also be used to enlarge the receptive field (Yu and Koltun
2015), and dense connection networks can be used to aggre-
gate multi-scale features (Huang et al. 2017). Combining these
two network structures, the dilated dense networks have been
recently proposed and successfully applied in different appli-
cations (Xu et al. 2019; Shamsolmoali et al. 2019). To illus-
trate the effectiveness of our residual U-Net structure, we re-
placed it with a dilated dense network (DDN) in our proposed
framework for label correction. The structure of the dilated
dense network is shown in Fig. 7. Table 3 shows nine index
values of the segmentation results obtained by FCN-MV and
DDN-MV. It can be observed that the segmentation results
obtained by these two methods are very similar. This demon-
strates that our residual U-Net structure is as effective as the
recently proposed dilated dense network structure for label
correction.

We also compared the proposed methods to a state-of-the-art
deep learning based image segmentation method with 3D deep-
ly supervised network (DSN) (Dou et al. 2017). Because of the
restriction of limited GPU memory, DSN used image patches as
input, ignoring the global spatial information. This led to some
artifacts in the segmentation results, such as isolated points and
holes. Figure 8 shows two hippocampus segmentations obtain-
ed by DSN, in which such artifacts can be noticed.

In our proposed methods, the inputs to our architecture were
an image patch from the target image and the corresponding
patch from each warped atlas. With this formulation, our con-
fidence estimation can be relatively easily completed, and does
not require as much global image information as the semantic
segmentation methods. In fact, image registration between
each atlas image and the target image has already captured
the global spatial information of brain structure, and the label
fusion step can further eliminate possible artifacts introduced
by label correction to make the segmentation smooth.

As shown in Table 2 and Fig. 4, our proposed methods
obtain the smallest standard deviations in most segmentation
evaluation measures. For the segmentation results of DSN,
because of the artifacts, several severe outliers can be ob-
served in HD measure, which demonstrates that 3D deep
learning segmentation method DSN is not as robust as our
proposed methods. Thus, by combining the advantages of
deep learning methods and multi-atlas segmentation methods,
our proposed methods can obtain more accurate and robust
segmentation results.

Fig. 8 Two selected hippocampus segmentation results obtained by DSN
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Conclusion

In this paper, we have presented a new multi-atlas label fusion
framework by using deep learning for confidence estimation.
Specifically, deep learning was used to identify the potential
errors in the warped atlas labels and they were then corrected
based on the estimated confidence maps. The final segmenta-
tion was obtained by two label fusion methods, MV and JLF,
on those corrected (warped) atlas labels. Our proposed
methods, FCN-MV and FCN-JLF, have been validated on a
public dataset for hippocampus segmentation. The results
show better performance of our proposed methods than the
state-of-the-art segmentation methods.

Information Sharing Statement

MR images used in this manuscript can be freely
downloaded from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (RRID:RRID:SCR 003007,
http://adni.loni.usc.edu/). Ground-truth hippocampus la-
bels of the image data were provided by the European
Alzheimer’s Disease Consortium and Alzheimer’s
Disease Neuroimaging Initiative, and can be freely
downloaded (www.hippocampal-protocol.net). Software
developed in this manuscript is available upon request
from Dr. Zhu (Email: hancanzhu@yeah.net).

Acknowledgments This work was supported in part by National
Natural Science Foundation of China [61602307, 61877039] and
Natural Science Foundation of Zhejiang Province [LY19F020013,
LY20F020011].

Data collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012).
ADNI is funded by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;
CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli
Lilly and Company; Eurolmmun; F. Hoffmann-La Roche Ltd. and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare;
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &
Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;
Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in
Canada. Private sector contributions are facilitated by the
Foundation for the National Institutes of Health (www.fnih.org).
The grantee organization is the Northern California Institute for
Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of
Southern California. ADNI data are disseminated by the Laboratory
for Neuro Imaging at the University of Southern California.

@ Springer

References

Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J. V., & Rueckert, D.
(2009). Multi-atlas based segmentation of brain images: Atlas selec-
tion and its effect on accuracy. Neurolmage, 46(3), 726-738.

Artaechevarria, X., Mufioz-Barrutia, A., and Ortiz-de-Solorzano,
C.(2008). “Efficient classifier generation and weighted voting for
atlas-based segmentation: Two small steps faster and closer to the
combination oracle,” SPIE Medical Imaging, 69141 W—69141W-9.

Artaechevarria, X., Munoz-Barrutia, A., & Ortiz-de-Solorzano, C.
(2009). Combination strategies in multi-atlas image segmentation:
Application to brain MR data. Medical Imaging, IEEE Transactions
on, 28(8), 1266-1277.

Asman, A. J., & Landman, B. A. (2012). Formulating spatially varying
performance in the statistical fusion framework. Medical Imaging,
IEEE Transactions on, 31(6), 1326—1336.

Asman, A. J., & Landman, B. A. (2013). Non-local statistical label fusion
for multi-atlas segmentation. Medical Image Analysis, 17(2), 194—
208.

Asman, A. J., & Landman, B. A. (2014). Hierarchical performance esti-
mation in the statistical label fusion framework. Medical Image
Analysis, 18(7), 1070-1081.

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008).
Symmetric diffeomorphic image registration with cross-correlation:
Evaluating automated labeling of elderly and neurodegenerative
brain. Medical Image Analysis, 12(1), 2641.

Bai, W., Shi, W., O'Regan, D. P, etal. (2013). A probabilistic patch-based
label fusion model for multi-atlas segmentation with registration
refinement: Application to cardiac MR images. Medical Imaging,
IEEE Transactions on, 32(7), 1302—-1315.

Bai, W., Shi, W., Ledig, C., & Rueckert, D. (2015). Multi-atlas segmen-
tation with augmented features for cardiac MR images. Medical
Image Analysis, 19(1), 98-109.

Benkarim, O. M., Piella, G., Ballester, M. A. G., et al. (2017).
Discriminative confidence estimation for probabilistic multi-atlas
label fusion. Medical Image Analysis, 42, 274-287.

Boccardi, M., Bocchetta, M., Morency, F. C., Collins, D. L., Nishikawa,
M., Ganzola, R., Grothe, M. J., Wolf, D., Redolfi, A., Pievani, M.,
Antelmi, L., Fellgiebel, A., Matsuda, H., Teipel, S., Duchesne, S.,
Jack CR Jr, Frisoni, G. B., & EADC-ADNI Working Group on The
Harmonized Protocol for Manual Hippocampal Segmentation and
for the Alzheimer's Disease Neuroimaging Initiative. (2015).
Training labels for hippocampal segmentation based on the
EADC-ADNI harmonized hippocampal protocol. Alzheimers
Dement, 11(2), 175-183.

Cao, Y., Yuan, Y., Li, X. etal. (2011). “Segmenting images by combining
selected atlases on manifold,” International Conference on Medical
Image Computing and Computer-Assisted Intervention, 272-279.

Chen, H., Dou, Q., Yu, L., Qin, J., & Heng, P. A. (2018). VoxResNet:
Deep voxelwise residual networks for brain segmentation from 3D
MR images. Neurolmage, 170, 446-455.

Commowick, O., Akhondi-Asl, A., & Warfield, S. K. (2012). Estimating
a reference standard segmentation with spatially varying perfor-
mance parameters: Local MAP STAPLE. Medical Imaging, IEEE
Transactions on, 31(8), 1593—-1606.

Coupé, P., Manjon, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins,
D. L. (2011). Patch-based segmentation using expert priors:
Application to hippocampus and ventricle segmentation.
Neurolmage, 54(2), 940-954.

Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C., Gur, R. E.,
Satterthwaite, T. D., Furth, S., Davatzikos, C., & Alzheimer's
Neuroimaging Initiative. (2016). MUSE: MUIti-atlas region segmenta-
tion utilizing ensembles of registration algorithms and parameters, and
locally optimal atlas selection. Neurolmage, 127, 186-195.


http://adni.loni.usc.edu/
http://www.hippocampal-protocol.net
http://www.fnih.org

Neuroinform (2020) 18:319-331

331

Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., & Heng, P. A. (2017).
3D deeply supervised network for automated segmentation of vol-
umetric medical images. Medical Image Analysis, 41, 40-54.

A.K. H. Duc, M. Modat, K. K. Leung et al., “Manifold learning for atlas
selection in multi-atlas-based segmentation of hippocampus,”
Medical Imaging 2012: Image Processing, 8314, 83140Z (2012).

Fang, L., Zhang, L., Nie, D. et al. (2017). “Brain Image Labeling Using
Multi-atlas Guided 3D Fully Convolutional Networks,”
International Workshop on Patch-based Techniques in Medical
Imaging, 12-19.

Gu, J., Wang, Z., Kuen, J., et al. (2017). Recent advances in convolutional
neural networks. Pattern Recognition, 77, 354-377.

Haber, E., & Modersitzki, J. (2004). Numerical methods for volume
preserving image registration. /nverse Problems, 20(5), 1621.

Hao, Y., Wang, T., Zhang, X., Duan, Y., Yu, C., Jiang, T., Fan, Y., &
Alzheimer's Disease Neuroimaging Initiative. (2014). Local label
learning (LLL) for subcortical structure segmentation: Application
to hippocampus segmentation. Human Brain Mapping, 35(6),
2674-2697.

Haom, Y., Liu, J., Duan, Y. et al. (2012). “Local label learning (L3) for
multi-atlas based segmentation,” SPIE Medical Imaging, 83142E-
83142E-8.

He, K., Zhang, X., Ren, S. et al. (2016a). “Identity mappings in deep
residual networks,” European Conference on Computer Vision,
630-645.

He, K., Zhang, X., Ren, S. et al. (2016b). “Deep residual learning for
image recognition,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 770-778.

Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers,
A. (2006). Automatic anatomical brain MRI segmentation combin-
ing label propagation and decision fusion. Neurolmage, 33(1), 115—
126.

Huang, G., Liu, Z., Van Der Maaten, L. et al. (2017). “Densely connected
convolutional networks,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4700-4708.

Iglesias, J. E., & Sabuncu, M. R. (2015). Multi-atlas segmentation of
biomedical images: A survey. Medical Image Analysis, 24(1),
205-219.

Jack, C. R., Bernstein, M. A., Fox, N. C., et al. (2008). The Alzheimer's
disease neuroimaging initiative (ADNI): MRI methods. Journal of
Magnetic Resonance Imaging, 27(4), 685-691.

Jafari-Khouzani, K., Elisevich, K. V., Patel, S., & Soltanian-Zadeh, H.
(2011). Dataset of magnetic resonance images of nonepileptic sub-
jects and temporal lobe epilepsy patients for validation of hippocam-
pal segmentation techniques. Neuroinformatics, 9(4), 335-346.

Jia, Y., Shelhamer, E., Donahue, J. et al. (2014). “Caffe: Convolutional
architecture for fast feature embedding,” Proceedings of the 22nd
ACM international conference on Multimedia, 675—678.

Jorge Cardoso, M., Leung, K., Modat, M., Keihaninejad, S., Cash, D.,
Barnes, J., Fox, N. C., Ourselin, S., & Alzheimer’s Disease
Neuroimaging Initiative. (2013). STEPS: Similarity and truth esti-
mation for propagated segmentations and its application to hippo-
campal segmentation and brain parcelation. Medical Image
Analysis, 17(6), 671-684.

Langerak, T. R., Berendsen, F. F., Van der Heide, U. A., et al. (2013).
Multiatlas-based segmentation with preregistration atlas selection.
Medical Physics, 40(9), 091701.

Liao, S., Gao, Y., & Shen, D. (2012). Sparse patch based prostate seg-
mentation in CT images. Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2012, 385-392.

Liao, S., Gao, Y., Lian, J., et al. (2013). Sparse patch-based label propa-
gation for accurate prostate localization in CT images. Medical
Imaging, IEEE Transactions on, 32(2), 419-434.

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional
networks for semantic segmentation,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 3431—
3440.

Lotjonen, J. M. P., Wolz, R., Koikkalainen, J. R., et al. (2010). Fast and
robust multi-atlas segmentation of brain magnetic resonance images.
Neurolmage, 49(3), 2352-2365.

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). “V-net: Fully
convolutional neural networks for volumetric medical image seg-
mentation,” 3D Vision (3DV), 2016 Fourth International
Conference on, 565-571.

Rohlfing, T., Brandt, R., Menzel, R., & Maurer CR Jr. (2004). Evaluation
of atlas selection strategies for atlas-based image segmentation with
application to confocal microscopy images of bee brains.
Neurolmage, 21(4), 1428-1442.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional
networks for biomedical image segmentation,” International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 234-241.

Rousseau, F., Habas, P. A., & Studholme, C. (2011). A supervised patch-
based approach for human brain labeling. Medical Imaging, IEEE
Transactions on, 30(10), 1852-1862.

Sabuncu, M. R., Yeo, B. T. T., Van Leemput, K., et al. (2010). A gener-
ative model for image segmentation based on label fusion. Medical
Imaging, IEEE Transactions on, 29(10), 1714-1729.

Sanroma, G., Wu, G., Gao, Y., et al. (2014). Learning to rank atlases for
multiple-atlas segmentation. Medical Imaging, IEEE Transactions
on, 33(10), 1939-1953.

Shamsolmoali, P., Zhang, J., & Yang, J. (2019). Image super resolution by
dilated dense progressive network. Image and Vision Computing,
88, 9-18.

Wang, H., Suh, J. W., Das, S. etal. (2011). “Regression-based label fusion
for multi-atlas segmentation,” Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, 1113-1120.

Wang, H., Suh, J. W., Das, S. R., et al. (2013). Multi-atlas segmentation
with joint label fusion. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(3), 611-623.

Warfield, S. K., Zou, K. H., & Wells, W. M. (2004). Simultaneous truth
and performance level estimation (STAPLE): An algorithm for the
validation of image segmentation. Medical Imaging, IEEE
Transactions on, 23(7), 903-921.

Xu, B., Ye, H., Zheng, Y., Wang, H., Luwang, T., & Jiang, Y. G. (2019).
Dense dilated network for video action recognition. /EEE
Transactions on Image Processing, 28(10), 4941-4953.

Yang, H., Sun, J., Li, H. et al. (2017). “Neural Multi-Atlas Label Fusion:
Application to Cardiac MR Images,” arXiv preprint arXiv:
1709.09641.

Yu, F., and Koltun, V. (2015). “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122.

Yu, L., Yang, X., Chen, H. et al. (2017). “Volumetric ConvNets with
Mixed Residual Connections for Automated Prostate
Segmentation from 3D MR Images,” AAAI, 66-72.

Zaffino, P., Ciardo, D., Raudaschl, P., et al. (2018). Multi atlas based
segmentation: Should we prefer the best atlas group over the group
of best atlases? Physics in Medicine & Biology, 63(12), 12NTO1.

Zhu, H., Cheng, H., and Fan, Y. (2015). “Random local binary pattern
based label learning for multi-atlas segmentation,” SPIE Medical
Imaging, 94131B-94131B-8.

Zhu, H., Cheng, H., Yang, X., Fan, Y., & Alzheimer’s Disease
Neuroimaging Initiative. (2017). Metric learning for multi-atlas
based segmentation of Hippocampus. Neuroinformatics, 15(1),
41-50.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer



	FCN Based Label Correction for Multi-Atlas Guided Organ Segmentation
	Abstract
	Introduction
	Background and Related Work
	Methods
	FCN Based Confidence Estimation
	Label Fusion with FCN-Based Confidence Estimation
	Evaluation Metrics

	Experiments and Results
	Data and Preprocessing
	Experiment and Parameter Setting
	Comparison with Existing Methods

	Discussion
	Conclusion
	Information Sharing Statement
	References




